0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

标签 > SiC

SiC

+关注 0人关注

金刚砂又名碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。

文章: 2803
视频: 20
浏览: 64602
帖子: 124

SiC简介

  金刚砂又名碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。 碳化硅又称碳硅石。在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种,可以称为金钢砂或耐火砂。 目前中国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。

SiC百科

  金刚砂又名碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。 碳化硅又称碳硅石。在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种,可以称为金钢砂或耐火砂。 目前中国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。

  制作工艺

  由于天然含量甚少,碳化硅主要多为人造。常见的方法是将石英砂与焦炭混合,利用其中的二氧化硅和石油焦,加入食盐和木屑,置入电炉中,加热到2000°C左右高温,经过各种化学工艺流程后得到碳化硅微粉。

  碳化硅(SiC)因其很大的硬度而成为一种重要的磨料,但其应用范围却超过一般的磨料。例如,它所具有的耐高温性、导热性而成为隧道窑或梭式窑的首选窑具材料之一,它所具有的导电性使其成为一种重要的电加热元件等。制备SiC制品首先要制备SiC冶炼块[或称:SiC颗粒料,因含有C且超硬,因此SiC颗粒料曾被称为:金刚砂。但要注意:它与天然金刚砂(也称:石榴子石)的成分不同。在工业生产中,SiC冶炼块通常以石英、石油焦等为原料,辅助回收料、乏料,经过粉磨等工序调配成为配比合理与粒度合适的炉料(为了调节炉料的透气性需要加入适量的木屑,制备绿碳化硅时还要添加适量食盐)经高温制备而成。高温制备SiC冶炼块的热工设备是专用的碳化硅电炉,其结构由炉底、内面镶有电极的端墙、可卸式侧墙、炉心体(全称为:电炉中心的通电发热体,一般用石墨粉或石油焦炭按一定的形状与尺寸安装在炉料中心,一般为圆形或矩形。其两端与电极相连)等组成。该电炉所用的烧成方法俗称:埋粉烧成。它一通电即为加热开始,炉心体温度约2500℃,甚至更高(2600~2700℃),炉料达到1450℃时开始合成SiC(但SiC主要是在≥1800℃时形成),且放出co。然而,≥2600℃时SiC会分解,但分解出的si又会与炉料中的C生成SiC。每组电炉配备一组变压器,但生产时只对单一电炉供电,以便根据电负荷特性调节电压来基本上保持恒功率,大功率电炉要加热约24 h,停电后生成SiC的反应基本结束,再经过一段时间的冷却就可以拆除侧墙,然后逐步取出炉料。

  高温煅烧后的炉料从外到内分别是:未反应料(在炉中起保温作用)、氧碳化硅羼(半反应料,主要成分是C与SiO。)、粘结物层(是粘结很紧的物料层,主要成分是C、SiO2、40%~60%SiC以及Fe、Al、Ca、Mg的碳酸盐)、无定形物层(主要成分是70%~90%SiC,而且是立方SiC即β-sic,其余是C、SiO2及Fe、A1、Ca、Mg的碳酸盐)、二级品SiC层(主要成分是90%~95%SiC,该层已生成六方SiC即口一SiC,但结晶体较小、很脆弱,不能作为磨料)、一级品SiC层(SiC含量《96%,而且是六方SiC即口一SiC的粗大结晶体)、炉芯体石墨。在上述各层料中,通常将未反应料和一部分氧碳化硅层料作为乏料收集,将氧碳化硅层的另一部分料与无定形物、二级品、部分粘结物一起收集为回炉料,而一些粘结很紧、块度大、杂质多的粘结物则抛弃之。而一级品则经过分级、粗碎、细碎、化学处理、干燥与筛分、磁选后就成为各种粒度的黑色或绿色的SiC颗粒。要制成碳化硅微粉还要经过水选过程;要做成碳化硅制品还要经过成型与结烧的过程。

查看详情

sic知识

展开查看更多

sic技术

SiC MOSFET模块的损耗计算

SiC MOSFET模块的损耗计算

为了安全使用SiC模块,需要计算工作条件下的功率损耗和结温,并在额定值范围内使用。MOSFET损耗计算与IGBT既有相似之处,也有不同。相对IGBT,M...

2025-06-18 标签:MOSFETIGBT三菱电机 879 0

安森美SiC Combo JFET技术概览和产品介绍

安森美SiC Combo JFET技术概览和产品介绍

安森美推出了具有卓越 RDS(on)*A 性能的 SiC JFET。 该器件特别适用于需要大电流处理能力和较低开关速度的应用,如固态断路器和大电流开关系...

2025-06-13 标签:MOSFET安森美JFET 613 0

理想汽车自研SiC团队成果:提高SiC MOSFET可靠性的方式

理想汽车自研SiC团队成果:提高SiC MOSFET可靠性的方式

  电子发烧友网报道(文/梁浩斌)SiC在电动汽车上的大规模应用,到目前为止已经经历8年时间,行业已经称得上成熟。但作为一种半导体功率器件,由于SiC衬...

2025-06-09 标签:MOSFETSiC 7996 0

方正微1200V Easy2B碳化硅模块在135kW PCS中的应用

方正微1200V Easy2B碳化硅模块在135kW PCS中的应用

随着全球能源需求不断上升,我国“双碳”战略的逐步推进和新能源行业的快速发展,近年来光伏储能充电系统(PCS-Photovoltaic Storage C...

2025-06-17 标签:MOSFETSiCPCS 445 0

CoolSiC™ MOSFET G2导通特性解析

CoolSiC™ MOSFET G2导通特性解析

上一篇我们介绍了英飞凌CoolSiCMOSFETG2的产品特性(参考文章:CoolSiCMOSFETG2性能综述)。那么在实际应用中,G2如何进行正确的...

2025-06-16 标签:英飞凌MOSFETSiC 58 0

安森美SiC Combo JFET的静态特性和动态特性

安森美SiC Combo JFET的静态特性和动态特性

安森美推出了具有卓越 RDS(on)*A 性能的 SiC JFET。 该器件特别适用于需要大电流处理能力和较低开关速度的应用,如固态断路器和大电流开关系...

2025-06-16 标签:安森美JFETSiC 479 0

SiC碳化硅第三代半导体材料 |  耐高温绝缘材料应用方案

SiC碳化硅第三代半导体材料 | 耐高温绝缘材料应用方案

碳化硅材料主要包括单晶和陶瓷2大类,无论是作为单晶还是陶瓷,碳化硅材料目前已成为半导体、新能源汽车、光伏等三大千亿赛道的关键材料之一。图片来源:Pixa...

2025-06-15 标签:半导体SiC 52 0

碳化硅在多种应用场景中的影响

碳化硅在多种应用场景中的影响

对碳化硅技术进行商业化应用时,需要持续关注材料缺陷、器件可靠性和相关封装技术。本文还将向研究人员和专业人士介绍一些实用知识,帮助了解碳化硅如何为功率半导...

2025-06-13 标签:晶体管SiC功率半导体 347 0

SiC MOSFET计算损耗的方法

SiC MOSFET计算损耗的方法

本文将介绍如何根据开关波形计算使用了SiC MOSFET的开关电路中的SiC MOSFET的损耗。这是一种在线性近似的有效范围内对开关波形进行分割,并使...

2025-06-12 标签:开关电路MOSFET波形 858 0

基于SiC碳化硅功率模块的高效、高可靠PCS解决方案

基于SiC碳化硅功率模块的高效、高可靠PCS解决方案

亚非拉市场工商业储能破局之道:基于SiC碳化硅功率模块的高效、高可靠PCS解决方案 —— 为高温、电网不稳环境量身定制的技术革新 倾佳电子杨茜致力于推动...

2025-06-08 标签:SiCPCS碳化硅 242 0

查看更多>>

sic资讯

英飞凌新一代750V SiC MOSFET产品亮点

英飞凌750V CoolSiC 碳化硅MOSFET分立器件具有业界领先的抗寄生导通能力和成熟的栅极氧化层技术,可在Totem Pole、ANPC、Vie...

2025-06-20 标签:英飞凌MOSFETSiC 173 0

东芝推出两项创新技术提升碳化硅功率器件性能

东芝推出两项创新技术提升碳化硅功率器件性能

日本川崎——东芝电子元件及存储装置株式会社(简称“东芝”)研发了一项创新技术,该技术可在增强沟槽型碳化硅(SiC)MOSFET[2]的UIS耐用性[3]...

2025-06-20 标签:二极管MOSFET东芝 111 0

新品 | 采用CoolSiC™ 400V SiC MOSFET的ANPC三电平虚拟评估板

新品 | 采用CoolSiC™ 400V SiC MOSFET的ANPC三电平虚拟评估板

新品采用CoolSiC400VSiCMOSFET的ANPC三电平虚拟评估板该虚拟设计(提供设计文件,不提供实物产品)为3L-ANPC拓扑,是带隔离的三相...

2025-06-19 标签:MOSFETSiC评估板 334 0

SGS亮相第四届功率半导体产业论坛

近日,第四届功率半导体产业论坛在苏州召开,作为国际公认的测试、检验和认证机构,SGS受邀出席并发表《车规功率器件可靠性认证与SiC适用性探讨》主题演讲,...

2025-06-17 标签:功率器件SiC功率半导体 348 0

2025 OktoberTech™精彩回顾一: CoolSiC™碳化硅新品发布, 性能指标领跑全行业

2025 OktoberTech™精彩回顾一: CoolSiC™碳化硅新品发布, 性能指标领跑全行业

近日,英飞凌在上海举办的2025OktoberTech大中华区生态创新峰会在上海顺利落下帷幕。本次活动中,英飞凌推出多款CoolSiC碳化硅重磅新产品,...

2025-06-17 标签:英飞凌SiC碳化硅 395 0

方正微电子精彩亮相SNEC 2025

近日,在第十八届SNEC PV展,深圳方正微电子(FMIC)首次以“SiC功率专家”的品牌形象成功亮相光储行业,向客户展示了第三代半导体SiC产品在智慧...

2025-06-17 标签:新能源半导体SiC 269 0

突发!欧系Tier1抛售6寸SiC晶圆厂,牵一发而动全身

第三类半导体碳化矽(SiC)自 2023 年由中系业者打破过往料源产出瓶颈后,不仅打通了整个产业的上下游通道,实现供货顺畅且成本快速下降,同时也如同一面...

2025-06-20 标签:半导体晶圆厂SiC 73 0

突破性能边界:基本半导体B3M010C075Z SiC MOSFET技术解析与应用前景

突破性能边界:基本半导体B3M010C075Z SiC MOSFET技术解析与应用前景

突破性能边界:基本半导体B3M010C075Z SiC MOSFET技术解析与应用前景         在高效能电力电子系统飞速发展的今天,碳化硅(Si...

2025-06-16 标签:MOSFET半导体SiC 118 0

SiC 市场的下一个爆点:共源共栅(cascode)结构详解

SiC 市场的下一个爆点:共源共栅(cascode)结构详解

Cascode简介 碳化硅结型场效应晶体管(SiC JFET)相比其他竞争技术具有一些显著的优势,特别是在给定芯片面积下的低导通电阻(称为RDS.A)。...

2025-06-14 标签:SiC共源共栅Cascode 49 0

新品 | 英飞凌EconoDUAL™ 3 CoolSiC™ SiC MOSFET 1200V模块

新品 | 英飞凌EconoDUAL™ 3 CoolSiC™ SiC MOSFET 1200V模块

新品英飞凌EconoDUAL3CoolSiCSiCMOSFET1200V模块英飞凌EconoDUAL31200V/1.4mΩCoolSiCSiCMOSF...

2025-06-10 标签:英飞凌MOSFETSiC 441 0

查看更多>>

sic数据手册

相关标签

相关话题

换一批
  • 快充技术
    快充技术
    +关注
  • 尼吉康
    尼吉康
    +关注
  • trinamic
    trinamic
    +关注
    TRINAMIC总部位于德国汉堡,经过近十几年的发展在半导体行业被称作是一个神话,主要致力与运动控制产品的设计与研发(步进和直流无刷系统)主要产品包括芯片,模块和系统。
  • 阈值电压
    阈值电压
    +关注
      阈值电压 (Threshold voltage):通常将传输特性曲线中输出电流随输入电压改变而急剧变化转折区的中点对应的输入电压称为阈值电压。在描述不同的器件时具有不同的参数。如描述场发射的特性时,电流达到10mA时的电压被称为阈值电压。
  • 无线供电
    无线供电
    +关注
    无线供电,是一种方便安全的新技术,无需任何物理上的连接,电能可以近距离无接触地传输给负载。实际上近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。
  • 宁德时代
    宁德时代
    +关注
  • 艾德克斯
    艾德克斯
    +关注
    ITECH 艾德克斯电子为专业的仪器制造商,致力于“功率电子”产品为核心的相关产业测试解决方案的研究,通过不断深入了解各个行业的测试需求,持续提供给客户具有竞争力的测试方案。
  • 快充
    快充
    +关注
    目前手机快速充电主要分为三大类:VOOC闪充快速充电技术、高通Quick Charge 2.0快速充电技术、联发科Pump Express Plus快速充电技术。 另外在电动汽车领域快充也有很大的需求,电动车的续航需求不断提高已经让“2小时快速充电”成为现实。
  • Qi标准
    Qi标准
    +关注
    国际无线充电联盟(Wireless Power Consortium,WPC)2010年8月31日上午在北京钓鱼台国宾馆发布Qi无线充电国际标准,将该标准引入中国。
  • Pebble
    Pebble
    +关注
    Pebble,是一家智能手表厂商。2015年2 月底,智能手表厂商 Pebble 发起了新众筹,上线不足 1 小时就筹到了 100 万美元。
  • WPC
    WPC
    +关注
  • 手机快充
    手机快充
    +关注
    手机快充电主要分为三大类:VOOC闪充快速充电技术、高通Quick Charge 2.0快速充电技术、联发科Pump Express Plus快速充电技术。
  • 电池系统
    电池系统
    +关注
     BMS电池系统俗称之为电池保姆或电池管家,主要就是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
  • A4WP
    A4WP
    +关注
    A4WP由三星与Qualcomm创立的无线充电联盟,英特尔已加入该组织,并成为董事成员。
  • MAX660
    MAX660
    +关注
    MAX660 单片电荷泵电压逆变器将+1.5V 至+5.5V 输入转换为相应的-1.5V 至-5.5V 输出。仅使用两个低成本电容器,电荷泵的 100mA 输出取代了开关稳压器,消除了电感器及其相关成本、尺寸和 EMI。
  • 智能变电站
    智能变电站
    +关注
    采用可靠、经济、集成、低碳、环保的设备与设计,以全站信息数字化、通信平台网络化、信息共享标准化、系统功能集成化、结构设计紧凑化、高压设备智能化和运行状态可视化等为基本要求,能够支持电网实时在线分析和控制决策,进而提高整个电网运行可靠性及经济性的变电站。
  • USB PD
    USB PD
    +关注
  • 太阳能充电
    太阳能充电
    +关注
  • PSR
    PSR
    +关注
  • 光伏并网逆变器
    光伏并网逆变器
    +关注
    逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。
  • 浪涌抑制器
    浪涌抑制器
    +关注
  • 纳微半导体
    纳微半导体
    +关注
    Navitas 成立于 2014 年,开发的超高效氮化镓 (GaN)半导体在效率、性能、尺寸、成本和可持续性方面正在彻底改变电力电子领域。Navitas 这个名字来源于拉丁语中的能源,它不仅体现了我们对开发技术以改善和更可持续的能源使用的关注,还体现了我们到 2026 年为估计 13B 美元的功率半导体市场带来的能源。
  • USB-PD
    USB-PD
    +关注
  • PWM信号
    PWM信号
    +关注
    脉冲宽度调制是一种模拟控制方式,根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
  • 医疗电源
    医疗电源
    +关注
  • DCDC电源
    DCDC电源
    +关注
    DC/DC表示的是将某一电压等级的直流电源变换其他电压等级直流电源的装置。DC/DC按电压等级变换关系分升压电源和降压电源两类,按输入输出关系分隔离电源和无隔离电源两类。例如车载直流电源上接的DC/DC变换器是把高压的直流电变换为低压的直流电。
  • 共享充电宝
    共享充电宝
    +关注
    共享充电宝是指企业提供的充电租赁设备,用户使用移动设备扫描设备屏幕上的二维码交付押金,即可租借一个充电宝,充电宝成功归还后,押金可随时提现并退回账户。2021年4月,研究机构数据显示,2020年全国在线共享充电宝设备量已超过440万,用户规模超过2亿人。随着用户规模与落地场景的激增,消费者对共享充电宝的价格变得越来越敏感。
  • 系统电源
    系统电源
    +关注
  • 董明珠
    董明珠
    +关注
    董明珠, 出生于江苏南京,企业家 ,先后毕业于安徽芜湖职业技术学院、中南财经政法大学EMBA2008级 、中国社会科学院经济学系研究生班、中欧国际工商学院EMBA 。   1990年进入格力做业务经理。 1994年开始相继任珠海格力电器股份有限公司经营部部长、副总经理、副董事长。并在2012年5月,被任命为格力集团董事长。连任第十届、第十一届和第十二届全国人大代表,担任民建中央常委、广东省女企业家协会副会长、珠海市红十字会荣誉会长等职务 。2004年3月,当选人民日报《中国经济周刊》评选的2003-2004年度“中国十大女性经济人物”。2004年6月被评为“受MBA尊敬的十大创新企业家”和2004年11月被评为“2004年度中国十大营销人物”
  • LT8705
    LT8705
    +关注

关注此标签的用户(31人)

efans_62931057 jf_65683686 jf_87116849 jf_27590559 Austin11122 jf_19631743 jf_91020522 efans_80e021 13148775181 画皮西瓜 角里先生同学 jf_59050084

编辑推荐厂商产品技术软件/工具OS/语言教程专题